Fiducial Reference Measurements (FRM) for Sentinel-3

Overview

- What are Fiducial Reference Measurements (FRM)?
- Why do we need them at all?
- Examples of FRM in the context of Sentinel-3
- Summary
- Challenges for this meeting

Fiducial Reference Measurements (FRM)

- fi·du·cial (adj) Regarded or employed as a standard of reference, as in surveying.
 - [Late Latin fdcilis, from Latin fdcia, trust, from fdere, to trust; seebheidh- in Indo-European roots.]
- What's wrong with in situ?
 - It means everything to the uneducated
 - It's not tangible to a funding agency
 - It is not precise enough to argue for a validation program
- Sentinel-3 FRM are:
 - Linked to the S3 Cal/Val plan activities
 - Based on specific requirements
 - Forward thinking long-term vision
 - Building on the existing capability
 - Have an inclusive approach: FRM are not Mission specific (e.g. S3A, B, C, D... S2A, B, C, D...all need ocean colour FRM..., All Altimeters need transponders for range calibration and Sigma0...)

Why do we need FRM?

- FRM is the suite of ground measurements that provide the maximum Return On Investment (ROI) for the Mission by delivering the required confidence in the data products for users.
 - IF we have no FRM then we cannot really use the mission as we have no idea how accurate data products are
 - IF we have many FRM this is great scientifically (statistical significance, geographic coverage, robust network...) but incurs additional costs with reducing ROI
- There is a balance between these two extremes to deliver a satellite mission with a KNOWN product quality that is "fit for Purpose"

Is a mission product "fit for purpose"? It depends our knowledge of how "good" it is...

Benefit: Confidence in product performance

FRM Investment yields significant Initial FRM benefit: Investment: Confidence in Cannot product Further FRM demonstrate performance performance of Investment does increases not yield products significant improvement

Cost: FRM (installation/operation/maintenance)

Is a mission product "fit for purpose"? It depends our knowledge of how "good" it is...

Benefit: Confidence in product performance

Q: What is the optimal FRM investment? A: Sufficient to show that the Mission meets requirements: A HIGH-IMPACT FRM product Further FRM demonstrate performance Investment does performance of increases not yield products significant improvement

Cost: FRM (installation/operation/maintenance)

Example FRM: S3 SLSTR

- Ship-borne radiometers provide skin SST traceable to International standards.
- Drifting buoys provide wider geographical coverage and measure sub-surface SST (more complex validation) but not fully traceable.
- Moorings provide sub-surface SST better temporal coverage but poor spatial coverage – may be partially traceable
- HR-ARGO floats: Provide vertical profiles moderate coverage but not fully traceable...

Example FRM: S3 SLSTR

- Ship-borne radiometers provide skin SST traceable to International standards.
- Dritting buoys provide wider geograph? coverage and measure sub-surface (more complex validation) by traceable.
 Moorings provide is a might made SST better temporal complex of the poor spatial coverage in the poor spatia
- floats: Provide vertical profiles erate coverage but not fully traceable...

Example FRM: S3 OLCI

- We need FRM to perform vicarious calibration of OLCI - Boussole, Moby, others (statistics needs at least 3 points to work with...) - other data – aerosols?
- We need FRM to perform regional algorithm development and validation
 - Ship data, moorings, AERONET-OC, Platforms...
- FRM should be capable of coping with sensor specific issues (e.g. geometry of OLCI vs other OC sensors...evolution of S3 OLCI A/B
 → C/D units? What about S2 MSI?)

Example FRM: S3 OLCI

 We need FRM to perform vicarious calibration of OLCI - Boussole, Moby, others (statistics needs at least 3 points to work with...) - other data - aerosols?

- apable of coping with sensor FRM sb les (e.g. geometry of OLCI vs. JC sensors...evolution of S3 OLCI A/B
 - → C/D units? What about S2 MSI?)

Example FRM: S3 SRAL

- Deployment of Transponders (Range and Sigma-0)
- Comparison to Tide gauges (with GPS? Without GPS? Leveled?)
- Multi-Mission crossovers (Sigma0, wind, sea level?)
- Wave and wind model?
- New approaches?

Example FRM: S3 SRAL

 Deployment of Transponders (Range) and Sigma-0)

- Multi-Mission crosse ign impact FRM?

(Sigma0, wind, e.g. a high impact of the second of the secon

Jaches?

What makes an FRM and FRM?

- Standards Traceability via round-robin inter-calibration of instruments?
- Independence?
- An Uncertainty budget?
- Published papers?
- Good management?
- Maintenance of infrastructure and calibration?
- A good site? (atmosphere, gradients...)
- A long lime series?
- "Because this is what was done in the past"?
- Good protocols (measurement, processing, archive, documents...)?
- Availability (data sharing)?
- Provides evidence that we meet mission requirements?

Summary

- The term "in situ" measurement brings fear to some eyes... costs are potentially enormous
- A refined process is required to move on from where we are your S3VT sub-group chairs have a responsibility to "make it happen" me included!
- A requirements-based (justified) and prioritized (cost-benefit) suite of measurements is obviously required to demonstrate that S3 products are "fit for purpose"
- The concept of Fiducial Reference Measurements (FRM) may be one way to develop a more palatable case in the long term
- Care is needed to define FRM appropriately
- Europe needs to build a secure FRM base of its own to provide the required confidence in EO measurements and fully realise the Return on Investment (ROI) for Sentinels

In Europe, we have a lot of Copernicus infrastructure in preparation – will we be able demonstrate its performance?

Can we demonstrate we have met requirements?

Are products "fit for purpose" within Copernicus?

Challenges for this meeting

- Only example FRM for S3 have been presented
 What are the "actual" FRM?
- Can S3VT sub-groups define FRM?
- How should they be presented in the S3VT IP and/or Cal/Val plan?
- What defines an FRM?
- Can we link requirements for FRM from the S3 Cal/Val plan?

First S3VT meeting

- The aim of the first S3VT meeting is:
 - "to consolidate and document S3VT activities prior to launch to facilitate Phase E1 and Phase E2 cal/val planning"

Output:

A draft S3VT Implementation Plan (S3VT-IP)
 that will be the main reference of S3VT
 activities and planning for use by other entities
 within the Sentinel-3 Mission during Phase E1
 and E2.

First S3VT meeting

- The *aim* of t
 - "to co prior : Phase
- Output:
 - A drafthat wastivited within and E2

Reference

Revision
Date of Issue
Status De
Document Type PL

ELIMETSAT COSCIONATION - For Official Use

ELIMETSAT COSCIONATION - COSCIONATION

Sentinel-3 Scientific Validation Team (S3VT) Implementation Plan VT activities
2 E1 and

n (S3VT-IP)
S3VT
other entities
ing Phase E1

European Space Agency Agence apetials europeanne

Thank you - any questions?

For more information: craig.donlon@esa.int