

Matchup Strategy for Sensors Cross Calibration

Suzanne ANGELI-BERGANTZ Lydwine GROSS-COLZY

CONTENT

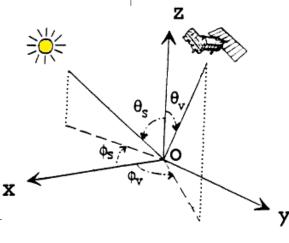
- Problem presentation
- Chosen algorithm
- Algorithm details
- Results
- Conclusions

Problem presentation

Present method: $\left|\theta_{V}^{1} - \theta_{V}^{2}\right| < \partial\theta_{V}$

$$\left|\theta_{S}^{1}-\theta_{S}^{2}\right|<\partial\theta_{S}$$

$$\left| (\phi_S^1 - \phi_V^1) - (\phi_S^2 - \phi_V^2) \right| < \partial \phi$$


with two types of box: $(\partial \theta_v, \partial \theta_s, \partial \phi) = (2^\circ, 2^\circ, 5^\circ)$ or $(5^\circ, 5^\circ, 10^\circ)$

Problem:

Some geometries need a smaller or a bigger box

Aims:

- Find an algorithm able to adapt the size of the box
- Use an adjusted BRDF model (here: Snyder)
- Criterion: less than 1% of BRDF variation

Chosen algorithm

Equations of the problem:
$$\min f(\theta_{S}, \phi_{S}, \theta_{V}, \phi_{V}) = \begin{cases} d(\theta_{S_{REF}}, \phi_{S_{REF}}, \theta_{S}, \phi_{S}) \\ d(\theta_{V_{REF}}, \phi_{V_{REF}}, \theta_{V}, \phi_{V}) \end{cases}$$

$$S. t.$$

$$\frac{|\rho_{BRDF}(\theta_{S_{REF}}, \phi_{S_{REF}}, \theta_{V_{REF}}, \phi_{V_{REF}}) - \rho_{BRDF}(\theta_{S}, \phi_{S}, \theta_{V}, \phi_{V})|}{\rho_{BRDF}(\theta_{S_{REF}}, \phi_{S_{REF}}, \theta_{V_{REF}}, \phi_{V_{REF}}, \phi_{V_{REF}})}$$

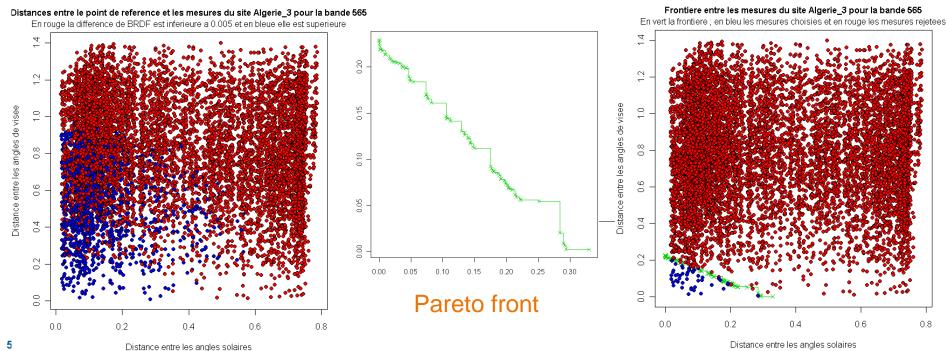
$$\phi_{S} \in [0^{\circ}, 360^{\circ}]$$

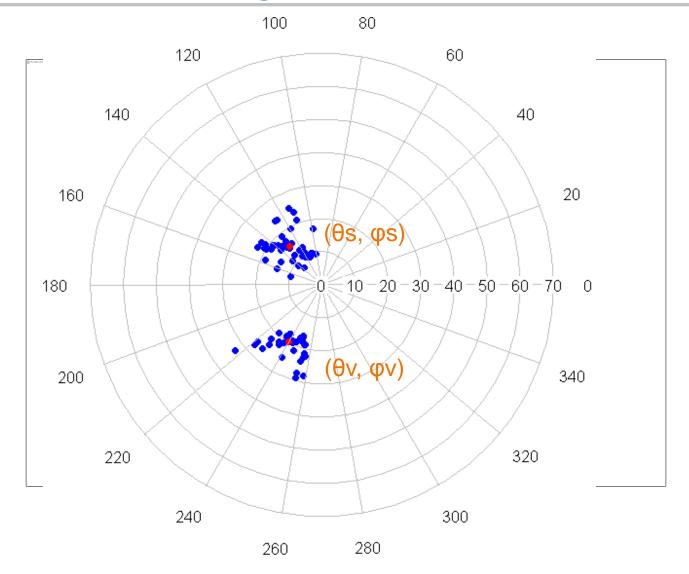
$$\phi_{V} \in [0^{\circ}, 360^{\circ}]$$

$$\theta_{V} \in [0^{\circ}, 70^{\circ}]$$

<u>Technique used:</u> a multi-objective optimization using genetic algorithm (NSGA-2) and creating a Pareto front between the two distances, formed by a specified number of points

Distance used: orthodromic distance

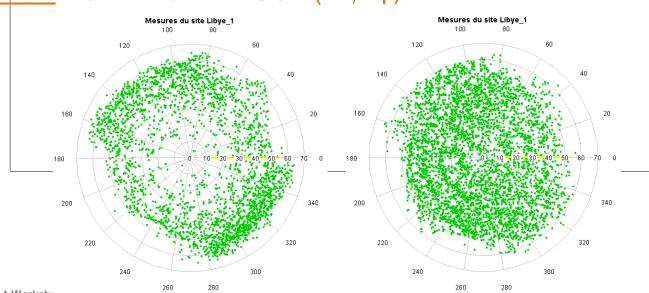

$$d(\theta_1, \varphi_1, \theta_2, \varphi_2) = R * \arccos(\sin(\theta_1)\sin(\theta_2)\cos(\varphi_2 - \varphi_1) + \cos(\theta_1)\cos(\theta_2))$$


Algorithm details

Justifications for the NSGA-2 algorithm:

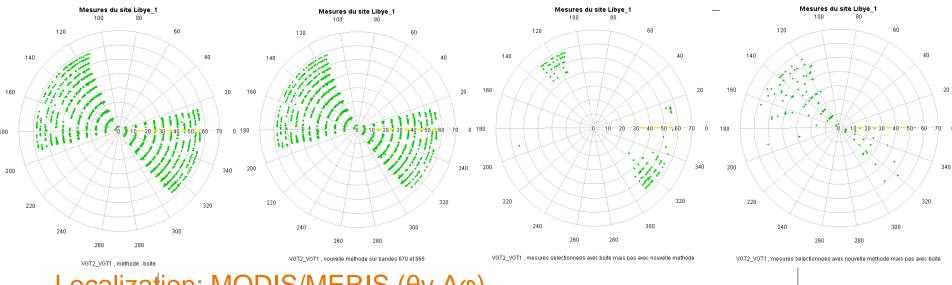
- Distance computed in the spherical coordinate system
- Automatic and multiband algorithm (constraints on the BRDF variation can be applied on multiple spectral bands)

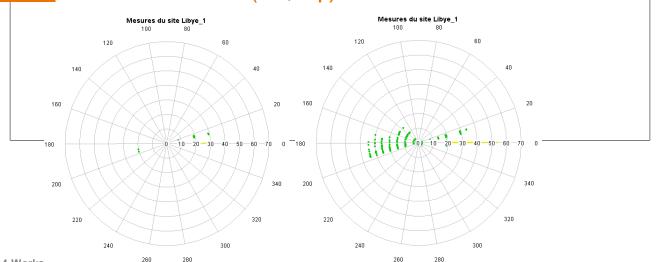
Algorithm details



Results

				Number of	Percentage
	Algorithm	number	of matched	available	of matched
		of couples	measurements	measurements	measurements
POLDER /	Box [2°,2°,5°]	3474	2722	10332	26.35%
PARASOL	Algorithm with criterion on bands 670 and 865	12886	4401	10332	42.60%
	Algorithm with criterion on bands 565, 670 and 86	5863	2666	10332	25.80%
VGT1 /	Box [2°,2°,5°]	10614	2009	2178	92.24%
VGT2	Algorithm with criterion on bands 670 and 865	59964	1969	2178	90.40%
MODIS/	Box [2°,2°,5°]	25	11	460	2.39%
MERIS	Algorithm with criterion on bands 670 and 865	11319	211	460	45.87%
	Algorithm with criterion on bands 565, 670 and 86	6805	179	460	38.91%


Localization: POLDER/PARASOL ($\theta v, \Delta \phi$)


Results

Localization: VGT1/VGT2 (θv,Δφ)

Localization: MODIS/MERIS $(\theta v, \Delta \phi)$

MERIS_MODIS, methode: boite

MERIS_MODIS, nouvelle methode sur bandes 670 et 865

Conclusion

Matched measurements seem to be more stable from a radiometric point of view (more measurements are matched on low zenith angles)

The method is generic: parameters can be modified (spectral bands, BRDF model, percentage of BRDF variation, sensors, type of calibration site, ...)

Requirement: Adjustment of BRDF model on the studied site for each spectral band

Performance: Around 4 seconds per measurement on a laptop with R

Next step: comparing calibrations coefficients obtained by these two techniques

Thank you for your attention