

Measurement needs for automated site characterization

Kurt Thome

CEOS/IVOS 25
Frascati, Italy
March 19-21, 2013

NASA/Goddard Space Flight Center Kurtis.thome@nasa.gov

Landnet approach

Automated ground measurement approaches are a useful means for radiometric calibration

- Many success stories
 - MOBY and Boussole
 - Stennis Space Center facility
 - JPL facility at Lake Tahoe and Frenchman Flat
 - UofA at RRV Playa
- Allows data to be collected at the convenience of the sensor scheduler
- Allows intercomparisons between sensors without need for coincident data collections

Background

Justifications for automated measurements are well established

- Automated sites can combine accuracy of in situ with flexibility of invariant scene
- Automated ground systems are always collecting so results are available when the on-orbit sensor needs them
- Questions that still exist are
 - What are the measurements needed?
 - What is the trade between cost and accuracy?
 - Are a few highly-instrumented sites better than more sites with less instrumentation?

Protocol development

A key portion of automated processing is development of protocols

- Not just a measurement
 - No commercially-available radiometers will currently satisfy a Landnet
 - Not feasible to outfit multiple sites with identical instrumentation
- Develop basic measurement scenarios
 - Surface parameterization
 - Spatial sampling
 - Spectral sampling
 - BRDF
 - Atmospheric parameterization
- Site Selection

Data product

Propose that goal should be to develop a model image of the site

- At-sensor radiance for a given sun-sensor geometry
 - Hyperspectral at 10-nm intervals from 350-2500 nm
 - 20-m spatial resolution
 - Cover the full test site area (several km in size)
- Standard and on-demand product
 - Standard image produced for five preselected times during the day
 - On-demand product based on user preference for sun- sensor geometry
- Includes accuracy assessment for data product

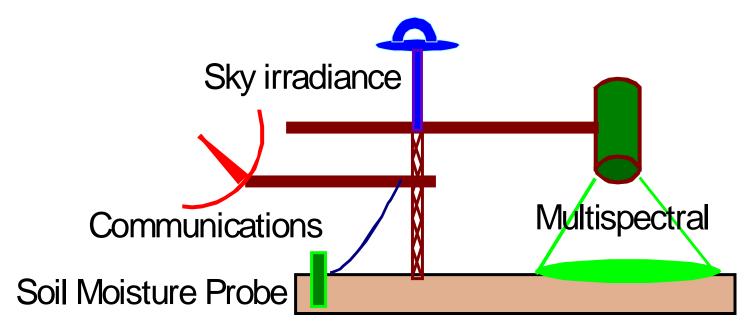
Landnet accuracy

Accuracy from automated instrumentation is no different than for other in-situ measurements

- Landnet would use similar processing schemes to methods already in place
- Landnet would make similar measurements
- Lack of on-site personnel means quality assessment is more difficult
 - Similar to issues with PIC sites
 - Develop techniques for quality assessment
- Differences between on-site versus automated
 - Hyperspectral versus multispectral
 - Mobile instrumentation versus stationary
 - Atmospheric characterization data

Landnet accuracies

Minimum set of measurements needed for a reflectance-based approach


- Impact of assumptions on uncertainties must be evaluated
- Numbers of data collections is key factor
- Sites with reflectance > 0.2
 - Site reflectance is most important
 - BRDF
 - Spectral
 - Spatial
 - Temporal
 - Aerosol effects can be viewed as random
 - Aerosol absorption changes with time

Minimum measurements

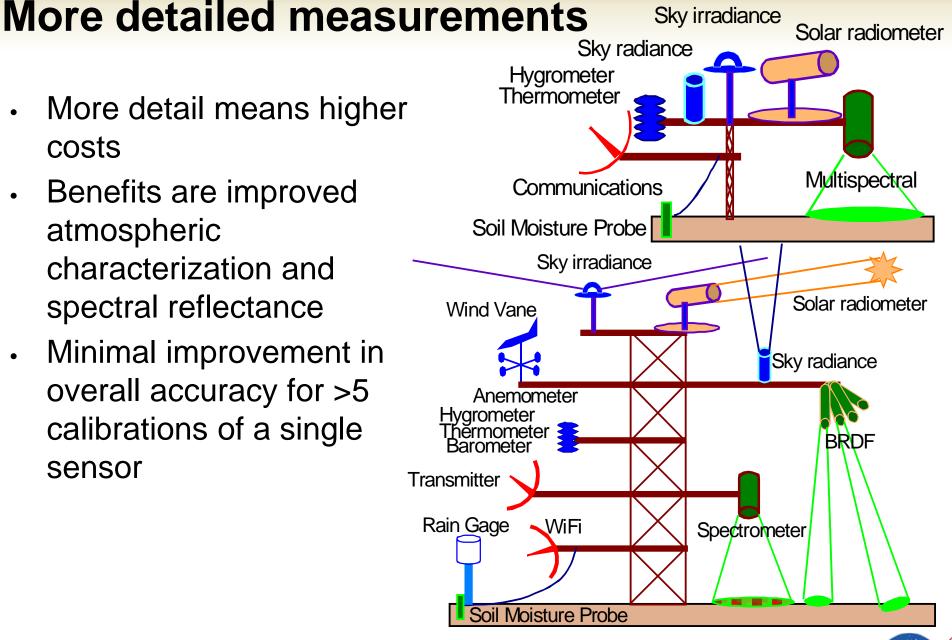
Most sites would be high enough reflectance to omit atmospheric aerosol measurements

- Sky irradiance still desired for reflectance retrieval
- Soil moisture probe to monitor surface conditions
- Multispectral systems tend to be more robust and easier to characterize

Minimal budget

Costs for minimum set of measurements would be \$50K

- Portable tower for deployment including costs to incorporate equipment (\$5K)
- 1 Multispectral, sky irradiance monitor (\$15K)
- 1 Multispectral ground monitor radiometer (\$15K)
- Soil moisture probe and data logger (\$5K)
- Power generation (\$5K)
- Irradiance and ground monitor costs are optimistic based on custom builds – no commercial product is currently available
- 2 Digital camera systems for sky and ground monitoring could be included (\$5K)
- Data connectivity and year-to-year maintenance not included



More detail means higher

Benefits are improved atmospheric characterization and spectral reflectance

costs

Minimal improvement in overall accuracy for >5 calibrations of a single sensor

Current instrumentation

Currently a suite of instruments to obtain atmospheric and surface information

- Atmospheric data from Cimel sun photometer
 - Atmospheric optical depth
 - Angstrom exponent
 - Water vapor
- Weather information from meteorological station
 - Temperature
 - Pressure
 - Precipitation

Way forward

Many options exist as to next steps with trades on cost, accuracy, and time to implement

- Test sites
 - New site
 - Previously-used
- Equipment
 - Already-existing
 - Obtain new equipment
- Processing schemes and data distribution
 - Coordinated processing effort
 - Independent developments

Way forward

Propose the following minimum approach for discussion purposes

- Goal should be to work for IVOS-approved result in place for Sentinel 2 launch
 - Inter comparison opportunity with Landsat 8
 - Moderate resolution makes site selection less difficult
- Two independent sites should be developed
 - Demonstrates "net" part of Landnet
 - One site should be an already-existing site to leverage past knowledge
- Coordinated processing scheme
 - CEOS-led distribution
 - Emphasis on processing and data quality protocols

